Weighted Feature Based Imperialist Competitive Algorithm With Ensemble Learning For Imbalanced Data Classification
Main Article Content
Abstract
In recent trends, discovering classification knowledge from imbalanced data received has grabbed much interest by many researchers. Data set imbalancing might occur if any one class comprises considerably smaller number of examples than remaining classes. Various application greatly necessitates minority class which is regarded as quite interesting aspect. The imbalanced classes’ distribution set up a challenge for standard learning algorithms like k-Nearest Neighbor (KNN), Support Vector Machine (SVM) and Neural Network (NN), subsequently biasing is done towards majority classes. An Improved Coefficient vector based Grey Wolf Optimization (ICGWO) Algorithm with ensemble classifier is deployed in previous approaches for classification. Nonetheless, adequate outcomes in terms of accuracy and execution time cannot be achieved. A Weighted Feature based Imperialist Competitive Algorithm (WFICA) with Ensemble Learning (EL) for imbalanced data classification is chiefly suggested for mitigating this issue. Primarily, normalization scheme is exploited for data transformation from different scales to an identical scale through Z-score normalization technique. Synthetic Minority Oversampling TEchnique (SMOTE) with Locally Linear Embedding (LLE) algorithm is deployed for oversampling process. Weighted Feature based Imperialist Competitive Algorithm (WFICA) is utilized for Optimal features selection which is done for classification accuracy enhancement. Ensemble Learning (EL) incorporated with Improved Bidirectional Long Short Term Memory (IBi-LSTM), Enhanced Weighted Support Vector Machine (EWSVM) and k-Nearest Neighbour (k-NN) classifiers is employed on selected features basis for performing classification. The suggested methodology is validated through experimental result and improved performance is attained when contrasted with prevailing system pertaining to accuracy, precision, recall and f-measure.
Downloads
Metrics
Article Details
You are free to:
- Share — copy and redistribute the material in any medium or format for any purpose, even commercially.
- Adapt — remix, transform, and build upon the material for any purpose, even commercially.
- The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
- Attribution — You must give appropriate credit , provide a link to the license, and indicate if changes were made . You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
Notices:
You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation .
No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material.