Hadoop Job Scheduling Using Improvised Ant Colony Optimization
Main Article Content
Abstract
Hadoop Distributed File System is used for storage along with a programming framework MapReduce for processing large datasets allowing parallel processing. The process of handling such complex and vast data and maintaining the performance parameters up to certain level is a difficult task. Hence, an improvised mechanism is proposed here that will enhance the job scheduling capabilities of Hadoop and optimize allocation and utilization of resources. Significantly, an aggregator node is added to the default HDFS framework architecture to improve the performance of Hadoop Name node. In this paper, four entities viz., the name node, secondary name node, aggregator nodes, and data nodes have been modified. Here, the aggregator node assigns jobs to data node, while Name node tracks aggregator nodes. Also, based on the job size and expected execution time, an improvised ant colony optimization method is developed for scheduling jobs.In the end, the results demonstrate notable improvisation over native Hadoop and other approaches.
Downloads
Metrics
Article Details
You are free to:
- Share — copy and redistribute the material in any medium or format for any purpose, even commercially.
- Adapt — remix, transform, and build upon the material for any purpose, even commercially.
- The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
- Attribution — You must give appropriate credit , provide a link to the license, and indicate if changes were made . You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
Notices:
You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation .
No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material.