Motor-Imagery EEG Signals Classificationusing SVM, MLP and LDA Classifiers
Main Article Content
Abstract
Electroencephalogram (EEG)signals based brain-computer interfacing (BCI) is the current technology trends in the field of rehabilitation robotic. This study compared the performance of support vector machine (SVM), linear discriminant analysis (LDA) and multi-layer perceptron (MLP) classifier with the combination of eight different features as a feature vector. EEG data were acquired from 20 healthy human subjects with predefined protocols. After the EEG signals acquisition, it was pre-processed followed by feature extraction and classification by using SVM MLP and LDA classifiers. The results exhibited that the SVM method was the best approach with 98.8% classification accuracy followed by MLP classifier. Finally, the SVM classifier and Arduino Mega controller was employed for offline controlling of the gripper of the robotic arm prototype. The finding of this study may be useful for online controlling as well as multi-degree of freedom with multi-class EEG dataset.
Downloads
Metrics
Article Details
You are free to:
- Share — copy and redistribute the material in any medium or format for any purpose, even commercially.
- Adapt — remix, transform, and build upon the material for any purpose, even commercially.
- The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
- Attribution — You must give appropriate credit , provide a link to the license, and indicate if changes were made . You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
Notices:
You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation .
No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material.