Cluster Optimization for Boundary Points using Distributive Progressive Feature Selection Algorithm
Main Article Content
Abstract
A group of different data objects is classified as similar objects is known as clusters. It is the process of finding homogeneous data items like patterns, documents etc. and then group the homogenous data items togetherothers groupsmay have dissimilar data items. Most of the clustering methods are either crisp or fuzzy and moreover member allocation to the respective clusters is strictly based on similarity measures and membership functions.Both of the methods have limitations in terms of membership. One strictly decides a sample must belong to single cluster and other anyway fuzzy i.e probability. Finally, Quality and Purity like measure are applied to understand how well clusters are created. But there is a grey area in between i.e. ‘Boundary Points’ and ‘Moderately Far’ points from the cluster centre. We considered the cluster quality [18], processing time and relevant features identification as basis for our problem statement and implemented Zone based clustering by using map reducer concept. I have implemented the process to find far points from different clusters and generate a new cluster, repeat the above process until cluster quantity is stabilized. By using this processwe can improve the cluster quality and processing time also.
Downloads
Metrics
Article Details
You are free to:
- Share — copy and redistribute the material in any medium or format for any purpose, even commercially.
- Adapt — remix, transform, and build upon the material for any purpose, even commercially.
- The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
- Attribution — You must give appropriate credit , provide a link to the license, and indicate if changes were made . You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
Notices:
You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation .
No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material.