Feature Extraction In Gene Expression Dataset Using Multilayer Perceptron
Main Article Content
Abstract
Numerous amount of gene expression datasets that are publicly available have accumulated since decades. It is hence essential to recognize and extract the instances in terms of quantitative and qualitative means.In this study, Keras is utilized to model the multilayer perceptron (MLP) to extract the features from the given input gene expression dataset. The MLP extracts the features from the test datasets after its initial training with the top extracted features from the training classifiers. Finally with the top extracted features, the MLP is fine tuned to extract optimal features from the gene expression datasets namely Gene Expression database of Normal and Tumor tissues 2 (GENT2). The experimental results shows that the proposed model achieves better feature selection than other methods in terms of accuracy, f-measure, precision and recall.
Downloads
Metrics
Article Details
You are free to:
- Share — copy and redistribute the material in any medium or format for any purpose, even commercially.
- Adapt — remix, transform, and build upon the material for any purpose, even commercially.
- The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
- Attribution — You must give appropriate credit , provide a link to the license, and indicate if changes were made . You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
Notices:
You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation .
No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material.