Handwritten Text Recognition using Deep Learning and Word Beam Search
Main Article Content
Abstract
This paper offers a solution to traditional handwriting recognition techniques using concepts of Deep learning and Word Beam Search. This paper explains about how an individual handwritten word is classified from the handwritten text by translating into a digital form. The digital form when trained with the Connectionist Temporal Classification (CTC) loss function, the output produced is a RNN. This is a matrix containing character probabilities for each time-step. The final text is mapped using a CTC decoding algorithm by converting the character probabilities. The recognized text is constructed by a list of words from the dictionary by using the token passing algorithm. It is found the running time of token passing depends on the size of dictionary. Also the numbers like arbitrary character strings will not able to decode. In this paper the decoding search algorithm word beam search is proposed, in order to tackle these types of problems. This methodology support to constrain words similar to those contained in a dictionary. It allows the character strings such as arbitrary non-word between the words, and integrates into a word-level language model. It is found the running time is better when compared with the token passing. The proposed algorithm comprises of the decoding algorithm named vanilla beam search and token passing using the IAM dataset and Bentham data set.
Downloads
Metrics
Article Details
You are free to:
- Share — copy and redistribute the material in any medium or format for any purpose, even commercially.
- Adapt — remix, transform, and build upon the material for any purpose, even commercially.
- The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
- Attribution — You must give appropriate credit , provide a link to the license, and indicate if changes were made . You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
Notices:
You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation .
No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material.