Experimental analysis of heat transfer coefficient in counter flow shell and helical coil tube heat exchanger with hybrid nanofluids to enhance heat transfer rate using in food processing industries
Main Article Content
Abstract
The impact of overall heat transfer coefficient and the pressure drop on performance of a counter flow helical tube heat exchanger with Cu-Ni-water hybrid nanofluid are computed. To evaluate heat transfer rate for a mix of base fluid with copper and nickel nanoparticles of volume concentrations 0.02,0.04 and 0.06 are added. To control the sedimentation of nanoparticles in the base fluid Ultrasonication followed by magnetic stirrer method is used. In this work experiments are conducted with to enhance heat transfer rate rather than stability of nanoparticles. Experiments are conducted for different concentrations and coil turns under laminar flow regime. The results are shown that 0.04 % vol of Cu-Ni/H2O with 12 turns is more predominate foe food processing applications due to its consistency in maintaining a constant temperature.
Downloads
Metrics
Article Details
You are free to:
- Share — copy and redistribute the material in any medium or format for any purpose, even commercially.
- Adapt — remix, transform, and build upon the material for any purpose, even commercially.
- The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
- Attribution — You must give appropriate credit , provide a link to the license, and indicate if changes were made . You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
Notices:
You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation .
No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material.