Higher-Order Phase-Space Reconstruction for Detection of Epileptic Electroencephalogram
Main Article Content
Abstract
In this paper, the authors propose a new technique for the classification of seizures, non-seizures, and seizure-free EEG signals based on non-linear trajectories of EEG signals. The EEG signals are decomposed using the EMD technique to obtain intrinsic mode functions (IMFs). The phase space of these IMFs is then reconstructed using a novel technique of higher-order dimensions (3D, 4D, 5D, 6D, 7D, 8D, 9D, and 10D). The existing techniques of seizure detection have deployed 2D & 3D phase–space reconstruction only. The Euclidean distance of all higher-order PSR is used as a feature to classify seizures, non-seizures, and seizure-free EEG signals. The performance of the proposed method is analyzed on the Bonn University database in which 7D reconstructed phase space classification accuracy of 99.9% has been achieved both using Random Forest classifier and J48 decision tree.
Downloads
Metrics
Article Details
You are free to:
- Share — copy and redistribute the material in any medium or format for any purpose, even commercially.
- Adapt — remix, transform, and build upon the material for any purpose, even commercially.
- The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
- Attribution — You must give appropriate credit , provide a link to the license, and indicate if changes were made . You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
Notices:
You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation .
No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material.