Naïve Bayes Twitter Sentiment Analysis In Visualizing The Reputation Of Communication Service Providers: During Covid-19 Pandemic
Main Article Content
Abstract
We present the real-world public sentiment expressed on Twitter using the proposed conceptual model (CM) to visualize the communication service providers (CSP) reputation during the Covid-19 pandemic in Malaysia from March 18 until August 18, 2020. The CM is a guideline that entails public tweets directly or indirectly mentioned to the three biggest CSP in Malaysia: Celcom, Maxis, and Digi. A text classifier model optimized for short snippets like tweets is developed to make bilingual sentiment analysis possible. The two languages explored are Bahasa Malaysia and English since they are the two most spoken languages in Malaysia. The classifier model is trained and tested on a huge multidomain dataset pre-labeled with the labels “0” and “1”, which resemble “positive” and “negative”, respectively. We used the Naïve Bayes (NB) technique as the core of the classifier model. Functionality testing has done to ensure no significant error that will render the application useless, and the accuracy testing score of 89% is considered quite impressive. We came out with the visualization through the word clouds and presented -56%, -42%, and -43% of Net Brand Reputation for Celcom, Maxis, and Digi.
Downloads
Metrics
Article Details
You are free to:
- Share — copy and redistribute the material in any medium or format for any purpose, even commercially.
- Adapt — remix, transform, and build upon the material for any purpose, even commercially.
- The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
- Attribution — You must give appropriate credit , provide a link to the license, and indicate if changes were made . You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
Notices:
You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation .
No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material.