Pothole Region Extraction Based On Similarity Evaluation Scale Classification Using Image Processing
Main Article Content
Abstract
Pavement deterioration and abnormal climate induced by global warming lead to a constant rise in the number of potholes. Accordingly, the loss cost for maintenance and accidents also increases. Therefore, it is necessary to develop a method of classifying pavement potholes and detecting their locations. This study proposes the pothole region extraction based on similarity evaluation scale classification using image processing. The proposed technique sets up a classification threshold appropriately by considering the structure, brightness, and other factors of the grayscale-converted image through SSIM (Structural Similarity Index Measure). It binarizes porthole images classified according to the threshold, and then extracts pothole regions through the threshold based segmentation. A conventional image classification method utilizes the rules found in objects or the label selected by a user. The proposed method can take into account detailed factors by comparing image similarity in the unit of pixel. According to the performance evaluation, the proposed classification method’s F1-score is 0.83, and its accuracy of pothole region extraction is 0.851. Therefore, with the proposed technique, it is possible to make classification in consideration of similarity between images. In addition, the proposed method makes it possible to detect the regions similar to actual potholes accurately.
Downloads
Metrics
Article Details
You are free to:
- Share — copy and redistribute the material in any medium or format for any purpose, even commercially.
- Adapt — remix, transform, and build upon the material for any purpose, even commercially.
- The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
- Attribution — You must give appropriate credit , provide a link to the license, and indicate if changes were made . You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
Notices:
You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation .
No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material.