Study of Circular Distance in Graphs
Main Article Content
Abstract
Circular distance between vertices of a graph has a significant role, which is defined as summation of detour distance and geodesic distance. Attention is paid, this is metric on the set of all vertices of graph and it plays an important role in graph theory. Some bounds have been carried out for circular distance in terms of pendent vertices of graph . Some results and properties have been found for circular distance for some classes of graphs and applied this distance to Cartesian product of graphs〖 P〗_2×C_n. Including 〖 P〗_2×C_n, some graphs acted as a circular self-centered. Using this circular distance there exists some relations between various radii and diameters in path graphs. The possible applications were briefly discussed.
Downloads
Metrics
Article Details
You are free to:
- Share — copy and redistribute the material in any medium or format for any purpose, even commercially.
- Adapt — remix, transform, and build upon the material for any purpose, even commercially.
- The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
- Attribution — You must give appropriate credit , provide a link to the license, and indicate if changes were made . You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
Notices:
You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation .
No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material.