Dynamic Impact Response of Ultrafine Grained AA5052 Aluminum Alloy Processed Via Multiaxial Forging at Cryogenic Temperature
Main Article Content
Abstract
In this study, high strain rate mechanical test was conducted on ultrafine-grained AA5052 aluminum alloy using the Split-Hopkinson Pressure Bar experiment. The AA5052 aluminum alloy was processed via multiaxial forging under cryogenic condition at two different cycles to achieve grain refinement and ultimately, increase in strength of the material. The average strain rates that the specimens were subjected to during the Split-Hopkinson Pressure Bar experiment ranges from 1000 s-1 to 5000 s-1 at an increment of 1000 s-1. The EBSD map shows that the average grain size of the AA5052 aluminum alloys for the samples processed at 4-cycles is approximately ~900 nm while the samples processed at 6-cycles have a lower average grain size of approximately ~700 nm due to being subjected to more plastic deformation during the processing. The high strain rate deformation process of both specimens was dominated by thermal softening with minima strain hardening effect. During the deformation, the maximum flow stress experienced by samples that was processed at 4-cycles is 410 MPa at 5000 s-1 strain rate while samples processed at 6-cycles has 494 MPa at 3000 s-1. Strain hardenability is not dominant in the deformation mechanism but relative to AA5052 CF (4-cycles), AA5052 CF (6-cycles) has a better strain hardening exponent as the strain rate increases. Both specimens have the highest strain hardening exponent at 1000 s-1 which is 0.1544 and 0.134 for AA5052 CF (4-cycles) and AA5052 CF (6-cycles), respectively. Our results show that AA5052 CF (6-cycles) possesses better mechanical properties under high strain rate in comparison with AA5052 CF (6-cycles).
Downloads
Metrics
Article Details
You are free to:
- Share — copy and redistribute the material in any medium or format for any purpose, even commercially.
- Adapt — remix, transform, and build upon the material for any purpose, even commercially.
- The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
- Attribution — You must give appropriate credit , provide a link to the license, and indicate if changes were made . You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
Notices:
You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation .
No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material.