A Novel Granularity Optimal Feature Selection based on Multi-Variant Clustering for High Dimensional Data
Main Article Content
Abstract
Clustering is the most complex in multi/high dimensional data because of sub feature selection from overall features present in categorical data sources. Sub set feature be the aggressive approach to decrease feature dimensionality in mining of data, identification of patterns. Main aim behind selection of feature with respect to selection of optimal feature and decrease the redundancy. In-order to compute with redundant/irrelevant features in high dimensional sample data exploration based on feature selection calculation with data granular described in this document. Propose aNovel Granular Feature Multi-variant Clustering based Genetic Algorithm (NGFMCGA) model to evaluate the performance results in this implementation. This model main consists two phases, in first phase, based on theoretic graph grouping procedure divide features into different clusters, in second phase, select strongly representative related feature from each cluster with respect to matching of subset of features. Features present in this concept are independent because of features select from different clusters, proposed approach clustering have high probability in processing and increasing the quality of independent and useful features.Optimal subset feature selection improves accuracy of clustering and feature classification, performance of proposed approach describes better accuracy with respect to optimal subset selection is applied on publicly related data sets and it is compared with traditional supervised evolutionary approaches
Downloads
Metrics
Article Details
You are free to:
- Share — copy and redistribute the material in any medium or format for any purpose, even commercially.
- Adapt — remix, transform, and build upon the material for any purpose, even commercially.
- The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
- Attribution — You must give appropriate credit , provide a link to the license, and indicate if changes were made . You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
Notices:
You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation .
No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material.