An Enhanced CNN-2D for Audio-Visual Emotion Recognition (AVER) Using ADAM Optimizer
Main Article Content
Abstract
The importance of integrating visual components into the speech recognition process for improving robustness has been identified by recent developments in audio visual emotion recognition (AVER). Visual characteristics have a strong potential to boost the accuracy of current techniques for speech recognition and have become increasingly important when modelling speech recognizers. CNN is very good to work with images. An audio file can be converted into image file like a spectrogram with good frequency to extract hidden knowledge. This paper provides a method for emotional expression recognition using Spectrograms and CNN-2D. Spectrograms formed from the signals of speech it’s a CNN-2D input. The proposed model, which consists of three layers of CNN and those are convolution layers, pooling layers and fully connected layers extract discriminatory characteristics from the representations of spectrograms and for the seven feelings, performance estimates. This article compares the output with the existing SER using audio files and CNN. The accuracy is improved by 6.5% when CNN-2D is used.
Downloads
Metrics
Article Details
You are free to:
- Share — copy and redistribute the material in any medium or format for any purpose, even commercially.
- Adapt — remix, transform, and build upon the material for any purpose, even commercially.
- The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
- Attribution — You must give appropriate credit , provide a link to the license, and indicate if changes were made . You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
Notices:
You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation .
No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material.