Covariance Kalman Geometric Graph Based Feature Extraction And Bernoulli Kernel Classifier For Plant Leaf Disease Prediction
Main Article Content
Abstract
As far as the agricultural domain is concerned, one of the most hot research areas of analysis is accurate prediction of leaf disease from the leaf images of a plant. The prediction of agricultural plant diseases bymeans of the image processing techniques will hence reduce the dependence on the farmers to safeguard their agricultural land and also their products. However, with the presence of noise, the leaf disease prediction is said to be hindered. To address this issue, in this paper, Covariance Kalman Geometric Graph-basedBernoulliClassifier (CKGG-BC) for Plant leaf disease prediction is proposed. The CKGG-BC method is split into three parts. To start with the plant leaf image provided as input, the Covariance Kalman Filtered Preprocessing modelintroduced for the image enhancement. Second, Geometric Graph-based Segmented Co-occurrence Feature Extraction model is applied to the preprocessed image to accurately segment the infected leaf areas and followed by which extracting the accurate infected leaf areas. Finally, Bernoulli Online Multiple Kernel Learning Classifier is applied for accurate plant leaf disease prediction with minimum classification error. The proposed method provides a significant refinement with respect to state-of-the-art methods. Even under complex background conditions, i.e., in the presence of noise, the averageaccuracy of the proposed method is said to be improved and hence paves mechanism for prediction of plant leaf disease in a significant manner. Experimentalresults exhibit the effectiveness of the proposed method in terms of computational overhead, accuracy, true positive rate and classification error respectively.
Downloads
Metrics
Article Details
You are free to:
- Share — copy and redistribute the material in any medium or format for any purpose, even commercially.
- Adapt — remix, transform, and build upon the material for any purpose, even commercially.
- The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
- Attribution — You must give appropriate credit , provide a link to the license, and indicate if changes were made . You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
Notices:
You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation .
No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material.