Multiple Target Detection For OFDM Radar Based On Convolutional Neural Network
Main Article Content
Abstract
The objective of this paper is to propose a multiple target identification technique for orthogonal frequency division multiplexing (OFDM) radars. First, a 2-D (range & Doppler) periodogram is obtained from the reflected signal through 2-D fast Fourier transform (FFT) of the received OFDM symbols. Usually, the peaks of the periodogram indicates the targets. Conventionally, peak search algorithms are used to find the multiple targets. In this paper, however, a convolutional neural network (CNN) classifier is proposed to identify the targets. The proposed technique does not need any additional information but the 2-D periodogram while the conventional method requires the noise variance as well as the periodogram. The performance is examined through computer simulation. According to the results, if the number of maximum identifiable targets are small, the proposed technique performs well. However, as the number increases, the detection accuracy decreases. In the simulation environments, the proposed method outperforms the conventional one. The proposed OFDM radar technique can be applied to 6G mobile communications to identify the moving targets around the transmitter without additional frequency resource for radar systems.
Downloads
Metrics
Article Details
You are free to:
- Share — copy and redistribute the material in any medium or format for any purpose, even commercially.
- Adapt — remix, transform, and build upon the material for any purpose, even commercially.
- The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
- Attribution — You must give appropriate credit , provide a link to the license, and indicate if changes were made . You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
Notices:
You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation .
No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material.