Detection and Classification of Haze Affected Images Using CNN Approach
Main Article Content
Abstract
Detection and classifications of the haze affected image is important for the real time multimedia data transmission and reception in remote mode in order to improve the quality of the received image or video sequences. In this paper, Convolutional Neural Networks (CNN) classification approach is used with Shearlet Transform for the detection and segmentation of haze affected images.The image to be tested for haze pattern detection is preprocessed and then it is decomposed with shearlet transform. The features are computed from the shearlet transform decomposed coefficients and then these computed features are classified by the deep learning CNN for identifying the haze affected images. This proposed haze classification method is tested on both indoor and outdoor environmental images.
Downloads
Metrics
Article Details
You are free to:
- Share — copy and redistribute the material in any medium or format for any purpose, even commercially.
- Adapt — remix, transform, and build upon the material for any purpose, even commercially.
- The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
- Attribution — You must give appropriate credit , provide a link to the license, and indicate if changes were made . You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
Notices:
You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation .
No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material.