Approximate Solution of Non-Linear Reaction-Diffusion in A Thin Membrane: Taylor Series Method
Main Article Content
Abstract
The nonlinear reaction-diffusion cycle in the thin membrane that describes the chemical reactions involving three species is studied. The model consists of the system of on nonlinear reaction-diffusion equations. The closed type of analytical expression of concentrations for the enzyme was developed by solving equations using the Taylor series formula. This results in the mixed Dirichlet and Neumann boundary conditions. Taylor series method similar to exponential function method. This technique provides approximate and simple solutions that are quick, easy to compute, and efficiently correct. These estimated findings are compared to the nuxmerical results. There is a good agreement with the simulation results.
Downloads
Metrics
Article Details
You are free to:
- Share — copy and redistribute the material in any medium or format for any purpose, even commercially.
- Adapt — remix, transform, and build upon the material for any purpose, even commercially.
- The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
- Attribution — You must give appropriate credit , provide a link to the license, and indicate if changes were made . You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
Notices:
You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation .
No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material.