Inventory Model with Demand Dependant on Unit Cost- Input Parameters as Triangular Fuzzy Numbers
Main Article Content
Abstract
This paper considers an inventory model in which the shortages are backlogged and the demand is dependent on unit cost. An optimum value for average total cost is calculated by considering various input costs, lot size and maximum inventory under fuzzy environment. The process of defuzzification is done by using the signed distance method. Numerical example and sensitivity analysis is given for calculating both crisp and fuzzy values of the total cost.
Downloads
Metrics
Article Details
You are free to:
- Share — copy and redistribute the material in any medium or format for any purpose, even commercially.
- Adapt — remix, transform, and build upon the material for any purpose, even commercially.
- The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
- Attribution — You must give appropriate credit , provide a link to the license, and indicate if changes were made . You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
Notices:
You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation .
No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material.