Fuzzy Detour Convexity and Fuzzy Detour Covering in Fuzzy Graphs
Main Article Content
Abstract
A path P connecting a pair of vertices in a connected fuzzy graph is called a fuzzy detour, if its μ - length is maximum among all the feasible paths between them. In this paper we establish the notion of fuzzy detour convex sets, fuzzy detour covering, fuzzy detour basis, fuzzy detour number, fuzzy detour blocks and investigate some of their properties. It has been proved that, for a complete fuzzy graph G, the set of any pair of vertices in G is a fuzzy detour covering. A necessary and sufficient condition for a complete fuzzy graph to become a fuzzy detour block is also established. It has been proved that for a fuzzy tree there exists a nested chain of sets, where each set is a fuzzy detour convex. Application of fuzzy detour covering and fuzzy detour basis is also presented.
Downloads
Metrics
Article Details
You are free to:
- Share — copy and redistribute the material in any medium or format for any purpose, even commercially.
- Adapt — remix, transform, and build upon the material for any purpose, even commercially.
- The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
- Attribution — You must give appropriate credit , provide a link to the license, and indicate if changes were made . You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
Notices:
You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation .
No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material.