Social Network Extraction Unsupervised
Main Article Content
Abstract
In the era of information technology, the two developing sides are data science and artificial intelligence. In terms of scientific data, one of the tasks is the extraction of social networks from information sources that have the nature of big data. Meanwhile, in terms of artificial intelligence, the presence of contradictory methods has an impact on knowledge. This article describes an unsupervised as a stream of methods for extracting social networks from information sources. There are a variety of possible approaches and strategies to superficial methods as a starting concept. Each method has its advantages, but in general, it contributes to the integration of each other, namely simplifying, enriching, and emphasizing the results.
Downloads
Metrics
Article Details
You are free to:
- Share — copy and redistribute the material in any medium or format for any purpose, even commercially.
- Adapt — remix, transform, and build upon the material for any purpose, even commercially.
- The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
- Attribution — You must give appropriate credit , provide a link to the license, and indicate if changes were made . You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
Notices:
You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation .
No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material.