A Neural Network in Convolution with Constant Error Carousel Based Long Short Term Memory for Better Face Recognition
Main Article Content
Abstract
Unconstrained face identification, facial periocular recognition, facial land marking and pose prediction, facial expression recognition, 3D facial model design, and other facial-related problems require robust face detection in the wild. Despite the fact that the face recognition issue has been researched intensively for decades with different commercial implementations, it nevertheless faces problems in certain real-world scenarios due to multiple obstacles, such as severe facial occlusions, incredibly low resolutions, intense lighting, exceptionally pose inconsistencies, picture or video compression artefacts, and so on. To solve the problems described above, a face detection technique called Convolution Neural Network with Constant Error Carousel dependent Long Short Term Memory (CNN-CEC-LSTM) is proposed in this paper. This research implemented a novel network structure and designed a special feature extraction that employs a self-channel attention (SCA) block and a self-spatial attention (SSA) block that adaptively aggregates the feature maps in both channel and spatial domains to learn the inter-channel and inter-spatial connection matrices; additionally, matrix multiplications are conducted for a This approach first smoothed the initial image with a Gaussian filter before measuring the gradient image. The Canny-Kirsch Method edge detection algorithm was then used to identify human face edges. The proposed method is evaluated against two recent difficult face detection databases, including the IIT Kanpur Dataset. The experimental findings indicate that the proposed approach outperforms the most current cutting-edge face recognition approaches.
Downloads
Metrics
Article Details
You are free to:
- Share — copy and redistribute the material in any medium or format for any purpose, even commercially.
- Adapt — remix, transform, and build upon the material for any purpose, even commercially.
- The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
- Attribution — You must give appropriate credit , provide a link to the license, and indicate if changes were made . You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
Notices:
You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation .
No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material.