Feature Selection: An Assessment of Some Evolving Methodologies
Main Article Content
Abstract
Feature selection has predominant importance in various kinds of applications. However, it is still considered as a cumbersome process to identify the vital features among the available set for the problem taken for study. The researchers proposed wide variety of techniques over the period of time which concentrate on its own. Some of the existing familiar methods include Particle Swarm Optimisation (PSO), Genetic Algorithm (GA) and Simulated Annealing (SA). While some of the methods are existing, the emerging methods provide promising results compared with them. This article analyses such methods like LASSO, Boruta, Recursive Feature Elimination (RFE), Regularised Random Forest (RRF) and DALEX. The dataset of variant sizes is considered to assess the importance of feature selection out of the available features. The results are also discussed from the obtained features and the selected features with respect to the method chosen for study.
Downloads
Metrics
Article Details
You are free to:
- Share — copy and redistribute the material in any medium or format for any purpose, even commercially.
- Adapt — remix, transform, and build upon the material for any purpose, even commercially.
- The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
- Attribution — You must give appropriate credit , provide a link to the license, and indicate if changes were made . You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
Notices:
You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation .
No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material.