A Novel System for the Identification of Diabetic Retinopathy using Computer Based Statistical Classification
Main Article Content
Abstract
Diabetes Retinopathy (DR) is an eye disorder that affects the human retina due to increased insulin levels in the blood. Early detection and diagnosis of DR is essential in the optimal treatment of diabetic patients. The current research is to develop controls for identifying different characteristics and differences in colour retina and using different classifications. This therapeutic approach describes diabetes recovery from data collected from multiple fields including DRIDB0, DRIDB1, MESSIDOR, STARE and HRF. Here machine learning, neural networks and deep learning algorithms issues are addressed with related topics such as Sensitivity, Precision, Accuracy, Error, Specificity and F1-score, Mathews Correlation Coefficient (MCC) and coefficient of kappa are compared. Finally due to the deep learning strategy the results were more effective compared to other methods. The system can help ophthalmologists, to identify the symptoms of diabetes at an early stage, for better treatment and to improve the quality of life biology.
Downloads
Metrics
Article Details
You are free to:
- Share — copy and redistribute the material in any medium or format for any purpose, even commercially.
- Adapt — remix, transform, and build upon the material for any purpose, even commercially.
- The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
- Attribution — You must give appropriate credit , provide a link to the license, and indicate if changes were made . You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
Notices:
You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation .
No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material.