A New Way To Prevent Colorectal Cancer Using Supervised Learning Technique
Main Article Content
Abstract
The Colorectal cancer prompts to more number of death as of late. The diagnosis of colorectal cancer as early is protected to treat the patient. To distinguish and treat this type of cancer, Colonoscopy is applied ordinarily. Several risk prediction models for colorectal cancer have been created and approved in various populations but colon cancer effecting the young adults. In this research, we projected a Supervised Learning Technique for detecting colorectal cancer in high dimensional information.One of the most important and very popular tool for performing the machine learning tasks that includesnovelty detection,classificationorregression is Support vector machine (SVM). Training the SVM requires large quantity of quadratic programming. Due to memory constraints conventional methods are not directly applied. To overcomethese inadequacies,we introduced, Least Square (LS), Particle Swarm Optimization (PSO), Quadratic Programming and Quantum-behave PSO methods for training SVM.To corroborate the competence and proficiency of our predictable system, it is developed in open source called NCSS Software.The acquiredoutcomesof these approaches are verified on a CCG1.11 Colorectal dataset and related with the particularresolution model.
Downloads
Metrics
Article Details
You are free to:
- Share — copy and redistribute the material in any medium or format for any purpose, even commercially.
- Adapt — remix, transform, and build upon the material for any purpose, even commercially.
- The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
- Attribution — You must give appropriate credit , provide a link to the license, and indicate if changes were made . You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
Notices:
You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation .
No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material.