The Implementation of Question Answer System Using Deep Learning
Main Article Content
Abstract
Question-answer systems are referred to as advanced systems that can be used to provide answers to the questions which are asked by the user. The typical problem in natural language processing is automatic question-answering. The question-answering is aiming at designing systems that can automatically answer a question, in the same way as a human can find answers to questions. Community question answering (CQA) services are becoming popular over the past few years. It allows the members of the community to post as well as answer the questions. It helps users to get information from a comprehensive set of questions that are well answered. In the proposed system, a deep learning-based model is used for the automatic answering of the user’s questions. First, the questions from the dataset are embedded. The deep neural network is trained to find the similarity between questions. The best answer for each question is found as the one with the highest similarity score. The purpose of the proposed system is to design a model that helps to get the answer of a question automatically. The proposed system uses a hierarchical clustering algorithm for clustering the questions.
Downloads
Metrics
Article Details
You are free to:
- Share — copy and redistribute the material in any medium or format for any purpose, even commercially.
- Adapt — remix, transform, and build upon the material for any purpose, even commercially.
- The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
- Attribution — You must give appropriate credit , provide a link to the license, and indicate if changes were made . You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
Notices:
You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation .
No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material.