An Advanced Image Captioning using combination of CNN and LSTM
Main Article Content
Abstract
The Captioning of Image now a days is gaining a lot of interest which generates an automated simple and short sentence describing the image content. Machines indeed are trained in a way that they can understand the Image content and generate captions which are almost accurate at a human level of knowledge is a very tedious and interesting task. There are various solutions used to solve this tedious task and generate simple sentences known as captions using neural network which still comes with problems such as inaccurate captions, generating captions only for the seen images, etc. In this paper, the proposed system model was able to generate more precise captions using a two staged model which consists of a combination of Deep Neural Network algorithms (Convolutional and Long Short-Term Memory). The proposed model was able to overcome the problems arise using Traditional CNN and RNN algorithms. The model is trained and tested using the Flicker8k Data set.
Downloads
Metrics
Article Details
You are free to:
- Share — copy and redistribute the material in any medium or format for any purpose, even commercially.
- Adapt — remix, transform, and build upon the material for any purpose, even commercially.
- The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
- Attribution — You must give appropriate credit , provide a link to the license, and indicate if changes were made . You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
Notices:
You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation .
No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material.