Multiclass Software Bug Severity Classification using Decision Tree, Naive Bayes and Bagging
Main Article Content
Abstract
The software applications are experiencing the challenges of ever-growing complexity caused by the increase in the number of bugs. The software development process has been adversely affected due to the wastage of resources caused due to the bugs. It is imperative to identify and predict bugs to facilitate the software development process. Software bugs can be classified according to the severity of the bugs. In this paper a comparative analysis of Decision Tree, Naïve Bayes and Bagging approach is done for the bug severity classification. A comparative analysis of the Naïve Bayes, Decision Tree and Bagging approach is done for the accuracy, precision, recall and F-measure parameters
Downloads
Metrics
Article Details
You are free to:
- Share — copy and redistribute the material in any medium or format for any purpose, even commercially.
- Adapt — remix, transform, and build upon the material for any purpose, even commercially.
- The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
- Attribution — You must give appropriate credit , provide a link to the license, and indicate if changes were made . You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
Notices:
You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation .
No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material.