AN INEQUALITY IN GEOMETRIC FUNCTION THEORY FOR CERTAIN SUBCLASSES OF ANALYTIC FUNCTIONS
Main Article Content
Abstract
We introduce some classes of analytic functions, its subclasses and obtain sharp upper bounds of the functional for the analytic function belonging to these classes and subclasses.
Downloads
Metrics
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
You are free to:
- Share — copy and redistribute the material in any medium or format for any purpose, even commercially.
- Adapt — remix, transform, and build upon the material for any purpose, even commercially.
- The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
- Attribution — You must give appropriate credit , provide a link to the license, and indicate if changes were made . You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
Notices:
You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation .
No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material.
References
Alexander, J.W, Function which map the interior of unit circle upon simple regions, Ann. Of Math., 17 (1995), 12-22.
Aoufet. al., Fekete – Szego Inequalities for p – valent starlike and convex functions of complex order, Journal of the Egyptian Mathematical Society,22 (2014), 190 – 196.
Bieberbach, L. Uber die Koeffizienten derjenigen Potenzreihen, welche eine schlichte Ab- ¨ bildung des Einheitskreises vermitteln, S. B. Preuss Akad. Wiss., (1916), 940-955.
De Branges L., A proof of Bieberbach Conjecture, Acta. Math., 154 (1985), 137-152.
Duren, P.L., Coefficient of univalent functions, Bull. Amer. Math. Soc., 83 (1977), 891-911.
Fekete, M. and Szegö, G, Eine Bemerkung über ungerade schlichte Funktionen,J. London Math. Soc.,8 (1933), pp. 85–89.
Garabedian, P.R., Schiffer, M., AProof for the Bieberbach Conjecture forthe fourth coefficient, Arch. Rational Mech. Anal., 4 (1955), 427-465.
Kaur, C. and Singh, G., Approach To Coefficient Inequality For A New Subclass Of Starlike Functions With Extremals, International Journal Of Research In Advent Technology, 5(2017)
Kaur, C. and Singh, G., Coefficient Problem For A New Subclass Of Analytic Functions Using Subordination, International Journal Of Research In Advent Technology, 5(2017)
Kaur. G, Singh. G, Arif. M, Chinram. R, Iqbal. J, A study of third and fourth Hankel determinant problem for a particular class of bounded turning functions, Mathematical Problems in Engineering,22, 511-526, 2021
Kaur N., Fekete Szego Inequality Alongwith Their Extremal Functions Making Results Sharp For Certain Subclasses Of Analytic Functions, Webology, 18(4), 2021, 3075-3083
Keogh, F.R., Merkes, E.P., A coefficient inequality for certain classes of analytic functions,Proc. Of Amer. Math. Soc., 20, 8-12, 1989.
Koebe, P., Ueber die Uniformisierung beliebiger analytischer Kurven." Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen,(1907), 633-669.
Lindelof, E., Mémoire sur certaines inégalités dans la théorie des fonctions monogènes et quelques propriétés nouvelles de ces fonctions dans le voisinage d'un point singulier essentiel.,Acta Soc. Sci. Fenn., 23 (1909) , 481-519.
Löewner, C. (1917), Untersuchungen über die Verzerrung bei konformen Abbildungen des Einheitskreises |z| < 1, die durch Funktionen mit nichtverschwindender Ableitung geliefert werden. S.-B. Verh. Sächs. Ges. Wiss. Leipzig 69, 89–106, 1917
Ma, W. and Minda, D. unified treatment of some special classes of univalent functions, In Proceedings of the Conference on Complex Analysis , Int. Press Tianjin (1994), 157-169.
Miller, S.S., Mocanu, P.T. And Reade, M.O., All convex functions are univalent and starlike, Proc. of Amer. Math. Soc., 37 (1973), 553-554.
Nehari, Z. (1952), Conformal Mappings, McGraw- Hill, New York.
Nevanlinna, R., Über die konforme Abbildung von Sterngebieten. Översikt av Finska Vetenskaps-Soc. Förh. 63(A), Nr. 6, 1–21, 1920
Pederson, R., A proof for the Bieberbach conjecture for the sixth coefficient,Arch. Rational Mech. Anal., 31 (1968-69), 331-351.
Pederson, R. and Schiffer, M., A proof for the Bieberbach conjecture for the fifth coefficient, Arch. Rational Mech. Anal., 45 (1972), 161-193.
Rani, M., Singh, G., Some Classes Of Schwarzian Functions And Its Coefficient Inequality That Is Sharp, Turk. Jour. Of Computer and Mathematics Education, 11 (2020), 1366-1372.
Rathore, G. S., Singh, G. and Kumawat, L. et.al., Some Subclaases Of A New Class Of Analytic Functions under Fekete-Szego Inequality, Int. J. of Res. In Adv. Technology, 7(2019)
Rathore. G. S., Singh, G., Fekete – Szego Inequality for certain subclasses of analytic functions , Journal Of Chemical , Biological And Physical Sciences, 5(2015) ,
Singh. G, Fekete – Szego Inequality for a new class and its certain subclasses of analytic functions , General Mathematical Notes, 21 (2014),
Singh. G, Fekete – Szego Inequality for a new class of analytic functions and its subclass, MathematicalSciences: International Research Journal, 3 (2014),
Singh. G., Construction of Coefficient Inequality For a new Subclass of Class of Starlike Analytic Functions, Russian Journal of Mathematical Research Series, 1 (2015), 9-13.
Singh, G., Introduction of a new class of analytic functions with its Fekete–Szegö Inequality, International Journal of Mathematical Archive, 5 (2014), 30-35.
Singh, G, An Inequality of second and third Coefficients for a Subclass of Starlike Functions Constructed Using nth Derivative, Kaav Int.J. Of Sci. Eng. And Tech., 4 (2017), 206-210.
Singh, G, Coefficient Inequality for Close toStarlike Functions Constructed Using Inverse StarlikeClasses,Kaav Int.J. Of Sci. Eng. And Tech., 4 (2017), 177-182.
Singh, G, Coeff. Inequality for a subclass of Starlike functions that is constructed using nth derivative of the functions in the class, Kaav Int.J. Of Sci. Eng. And Tech., 4 (2017), 199-202.
Singh, G., Garg, J., Coefficient Inequality For A New Subclass Of Analytic Functions, Mathematical Sciences: International Research Journal, 4(2015)
Singh, G, Singh, Gagan, Fekete–Szegӧ Inequality For Subclasses Of A New Class Of Analytic Functions , Proceedings Of The World Congress On Engineering , (2014) , .
Singh, G, Sarao, M. S., and Mehrok, B. S., Fekete – Szegӧ Inequality For A New Class Of Analytic Functions , Conference Of Information And Mathematical Sciences , (2013).
Singh. G, Singh. Gagan, Sarao. M. S., Fekete – Szegӧ Inequality for a New Class of Convex Starlike Analytic Functions, Conf. Of Information and Mathematical Sciences, (2013).
Singh, G., Kaur, G., Coefficient Inequality for a Subclass of Starlike Function generated by symmetric points, Ganita, 70 (2020), 17-24.
Singh ,G., Kaur, G., Coefficient Inequality For A New Subclass Of Starlike Functions, International Journal Of Research In Advent Technology, 5, (2017) ,
Singh, G., Kaur, G., Fekete-Szegӧ Inequality For A New Subclass Of Starlike Functions, International Journal Of Research In Advent Technology, 5, (2017) ,
Singh, G., Kaur, G., Fekete-Szegӧ Inequality For Subclass Of Analytic Function Based On Generalized Derivative, Aryabhatta Journal Of Mathematics And Informatics, 9(2017),
Singh, G., Kaur, G., Coefficient Inequality For a subclass of analytic function using subordination method with extremal function, Int. J. Of Advance Res. In Sci&Engg , 7 (2018)
Singh, G., Kaur, G., Arif, M., Chinram R, Iqbal J, A study of third and fourth Hankel determinant problem for a particular class of bounded turning functions, Mathematical Problems in Engineering, 2021
Singh, G. and Kaur, G., 4th Hankel determinant for α bounded turning function, Advances in Mathematics: Scientific Journal, 9 (12), 10563-10567
Singh, G., Kaur, N., Fekete-Szegӧ Inequality For Certain Subclasses Of Analytic Functions, Mathematical Sciences: International Research Journal, 4(2015)
Singh, G., Singh, G., Singh, G., A subclass of bi-univalent functions defined by generalized Sãlãgean operator related to shell-like curves connected with Fibonacci numbers, International Journal of Mathematics and Mathematical Sciences, 2019
Singh, G., Singh, G., Singh, G., A new subclass of univalent functions, Уфимский математический журнал, 11(1), 132-139, 2019
Singh, G., Singh, G., Singh, G., A generalized subclass of alpha convex biunivalent functions of complex order, Jnanabha, 50 (1), 65-71, 2020
Singh, G., Singh, G., Singh, G., Upper bound on fourth Hankel determinant for certain subclass of multivalent functions, Jnanabha, 50 (2), 122-127, 2020
Singh, G., Singh, G., Singh, G., Certain subclasses of univalent and biunivalent functions related to shell-like curves connected with Fibonacci numbers, General Mathematics, 28 (1), 125-140, 2020
Singh, G., Singh, G., Singh, G., Certain subclasses of Sakaguchitype bi-univalent functions, Ganita, 69 (2), 45-55, 2019
Singh, G., Singh, G., Singh, G., Certain Subclasses of Bi-Close-to-Convex Functions Associated with Quasi-Subordination, Abstract and Applied Analysis, 1, 1-6, 2019
Functions., Southeast Asian Bulletin of Mathematics, 47 (3), 2023
Srivastava H. M., G. Kaur, Singh. G, Estimates of fourth Hankel determinant for a class of analytic functions with bounded turnings involving cardioid domains, Journal of Nonlinear and Convex Analysis, 22 (3), 511-526, 2021