Detection and Classification of Caterpillar using Image Processing with K-Nearest Neighbor Classification Technique
Main Article Content
Abstract
Caterpillars are the developmental stage of the flying insect called butterfly. The moths are the beautiful creature of earth which comes under the class of insects. They are recognized by their beautiful and colorful forewings body and legs. Caterpillars are the larval stage of the moth which are found in the leaf and stem of the plants when the moth laid eggs on the leaves after their mating. Caterpillar after fully developed from its eggs draw out a flimsy, soft cocoon made up of dark coarse silk on leaves and stem for their shelter. Caterpillar is also a beautiful creature that is found with different colors and strips with spines and urticating hair in their body for releasing venom for self-defense from external predators. The present study works on the detection and classification of the caterpillar using image processing with a k-NN classifier.This research help in characterizing the type of caterpillar image classification for particular three classes such as accuracy of Buck Moth Caterpillar, the accuracy of Saddleback Caterpillar, and the accuracy of Io moth Caterpillar. The following stages have been considered are preprocessing, segmentation, feature extraction, and classification methods using K- Nearest Neighbor classifier. The present investigation results that SYMLET5 analysis works well in the classification of the caterpillar with an accuracy of 96% using K- Nearest Neighbor classifier compare with other measures during investigation and analysis.
Downloads
Metrics
Article Details
You are free to:
- Share — copy and redistribute the material in any medium or format for any purpose, even commercially.
- Adapt — remix, transform, and build upon the material for any purpose, even commercially.
- The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
- Attribution — You must give appropriate credit , provide a link to the license, and indicate if changes were made . You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
Notices:
You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation .
No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material.