Detection and Classification of Caterpillar using Image Processing with K-Nearest Neighbor Classification Technique

Main Article Content

Dr. Mukta Jagdish, Andres Medina Guzman, Gerber F. Incacari Sancho, Aura Guerrero-Luzuriaga

Abstract

Caterpillars are the developmental stage of the flying insect called butterfly. The moths are the beautiful creature of earth which comes under the class of insects. They are recognized by their beautiful and colorful forewings body and legs. Caterpillars are the larval stage of the moth which are found in the leaf and stem of the plants when the moth laid eggs on the leaves after their mating. Caterpillar after fully developed from its eggs draw out a flimsy, soft cocoon made up of dark coarse silk on leaves and stem for their shelter. Caterpillar is also a beautiful creature that is found with different colors and strips with spines and urticating hair in their body for releasing venom for self-defense from external predators. The present study works on the detection and classification of the caterpillar using image processing with a k-NN classifier.This research help in characterizing the type of caterpillar image classification for particular three classes such as accuracy of Buck Moth Caterpillar, the accuracy of Saddleback Caterpillar, and the accuracy of Io moth Caterpillar. The following stages have been considered are preprocessing, segmentation, feature extraction, and classification methods using K- Nearest Neighbor classifier. The present investigation results that SYMLET5 analysis works well in the classification of the caterpillar with an accuracy of 96% using K- Nearest Neighbor classifier compare with other measures during investigation and analysis.

Article Details

Section
Articles