PRIME SERIAL RINGS WITH KRULL DIMENSION

Main Article Content

Dr. Manish Kumar Jha

Abstract

A Characterization of Prime Serial rings with Krull dimention as rings with a unique maximum ideal. A description of the laltice of  deals and laltice submodules of a module over ring with Krull dimension is a direct sum of indecomposable modules.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Article Details

How to Cite
Jha , D. M. K. (2020). PRIME SERIAL RINGS WITH KRULL DIMENSION. Turkish Journal of Computer and Mathematics Education (TURCOMAT), 11(1), 1713–1716. https://doi.org/10.61841/turcomat.v11i1.14687
Section
Research Articles

References

A. W. Chatters and C. R. Hajarnavis, Rings in which every complement right ideal is a direct summand, Quart. J. Math. Oxford Ser. (2) 28 (1977), 61—80.

A. W. Chatters, A note on Noetherian orders in Artinian rings, Glasgow Math. J. 20 (1979), 125—128.

A. W. Chatters and C. R. Hajarnavis, Rings with chain conditions (Pitman, 1980).

D. Eisenbud and P. Gri&th, Serial rings, /. Algebra 17 (1971), 389—400.

R. Gordon and J. C. Robson, Krull dimension, Mem. Amer. Math. Soc. 133 (1973).

T. H. Lenagan, Reduced rank in rings with Krull dimension, Ring Theory (Proc. Antwerp Conference, 1978), Lecture Notes in Pure and Appl. Math. 51 (Dekker, 1979), 123-131.