AI-Powered Recommender Systems: Personalization and Bias
Main Article Content
Abstract
AI-powered recommender systems changed how users discovered products and services online. These systems use sophisticated algorithms to analyse user preferences, behaviour’s, and product characteristics, with the goal of providing personalized recommendations. Personalization enhances the user experience by suggesting relevant content, thereby increasing user engagement and satisfaction.
However, the effectiveness of these programs raises concerns about inherent bias. Recommendation systems often rely on historical user data, which can be biased by the data, and lead to potential gaps and lack of recommendations for example, if historical information reflects a preference or it excludes particular groups, the system may inadvertently reinforce this bias.
Preventing bias in AI-driven recommendation systems is essential to ensure fairness and inclusion. Strategies such as algorithmic transparency, collection of diverse data types, and algorithmic adjustment can reduce biases. Striking a balance between individualism and diversity is challenging, requiring constant flexibility and ethical considerations.
Efforts are being made to increase transparency and accountability in these processes, with the aim of generating more relevant recommendations. Ethical guidelines, industry standards and regulatory frameworks will play a key role in shaping the development and implementation of these AI systems, including the design and implementation of responsible AI.
In conclusion, as AI-powered recommendation systems create personalized experiences, minimizing bias is essential to ensure fairness and encourage inclusion. Striving for a transparent, accountable, and ethical desi.
Downloads
Metrics
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
You are free to:
- Share — copy and redistribute the material in any medium or format for any purpose, even commercially.
- Adapt — remix, transform, and build upon the material for any purpose, even commercially.
- The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
- Attribution — You must give appropriate credit , provide a link to the license, and indicate if changes were made . You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
Notices:
You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation .
No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material.
References
"Matrix Factorization Techniques for Recommender Systems" by Yehuda Koren, Robert Bell, and Chris
Volinsky (2009) - This paper introduced the use of matrix factorization techniques for collaborative filtering-based
recommender systems, which became a cornerstone in the field.
"Deep Neural Networks for YouTube Recommendations" by Paul Covington, Jay Adams, and Emre Sargin
(2016) - This paper discusses how YouTube implemented deep learning techniques for content recommendations.
"Factorization Machines" by Steffen Rendle (2010) - This paper introduces factorization machines, a popular
model for recommendation that can handle sparse data efficiently.
"A Survey of Recommender Systems" by Gediminas Adomavicius and Alexander Tuzhilin (2005) - Though a
bit older, this paper provides a comprehensive survey of different recommendation techniques, laying a foundation
for understanding various approaches.
"Learning to Rank for Information Retrieval" by Tie-Yan Liu (2009) - While not solely focused on recommender
systems, this paper discusses learning to rank methods that are often used in recommendation systems to rank items.
R. K. Kaushik Anjali and D. Sharma, "Analyzing the Effect of Partial Shading on Performance of Grid
Connected Solar PV System", 2018 3rd International Conference and Workshops on Recent Advances and
Innovations in Engineering (ICRAIE), pp. 1-4, 2018.