Data Preprocessing: A Step-by-Step Guide for Clean and Usable Data

Main Article Content

Neelam singh
Brijesh Gaur

Abstract

Data preprocessing is an crucial phase within the records evaluation pipeline, pivotal in ensuring that uncooked statistics may be efficiently utilized to extract meaningful insights. This evaluates paper offers a complete manual to the intricate process of statistics preprocessing, providing a step-by using-step assessment of essential strategies and best practices for refining uncooked records into smooth and usable datasets. The paper encompasses diverse facts preprocessing obligations, including records cleaning, lacking price imputation, function engineering, and outlier detection, underscoring their important position in improving statistics great. Drawing from the modern studies and sensible tips, this review equips facts analysts and scientists
with the expertise and gear needed to bolster information reliability and relevance in a mess of programs.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Article Details

How to Cite
singh, N., & Gaur, B. . (2019). Data Preprocessing: A Step-by-Step Guide for Clean and Usable Data. Turkish Journal of Computer and Mathematics Education (TURCOMAT), 10(2), 1148–1153. https://doi.org/10.61841/turcomat.v10i2.14384
Section
Research Articles

References

Gantz, J.; Reinsel, D. The Digital Universe in 2020: Big Data, Bigger Digital Shadows, And Biggest Growth

in the Far East (accessed on 20 April 2018).

Hu, H.; Wen, Y.; Chua, T.S.; Li, X. Toward Scalable Systems for Big Data Analytics: A Technology Tutorial.

IEEE Access 2014, 2, 652–687

Rajaraman, A.; Ullman, J.D. Mining of Massive Datasets; Cambridge University Press: New York, NY, USA;

Cambridge, UK, 2011.

Pacheco, F.; Rangel, C.; Aguilar, J.; Cerrada, M.; Altamiranda, J. Methodological framework for data

processing based on the Data Science paradigm. In Proceedings of the 2014 XL Latin American Computing

Conference (CLEI), Montevideo, Uruguay, 15–19 September 2014; pp. 1–12.

Sebastian-Coleman, L. Measuring Data Quality for Ongoing Improvement: A Data Quality Assessment

Framework; Morgan Kaufmann Publishers Inc.: San Francisco, CA, USA, 2012.

Eyob, E. Social Implications of Data Mining and Information Privacy: Interdisciplinary Frameworks and

Solutions: Interdisciplinary Frameworks and Solutions; Information Science Reference: Hershey, PA, USA, 2009.

Piateski, G.; Frawley, W. Knowledge Discovery in Databases; MIT Press: Cambridge, MA, USA, 1991.

Hall, M.; Frank, E.; Holmes, G.; Pfahringer, B.; Reutemann, P.; Witten, I.H. The WEKA Data Mining Software:

An Update. SIGKDD Explor. Newsl. 2009, 11, 10–18.

Mierswa, I.; Wurst, M.; Klinkenberg, R.; Scholz, M.; Euler, T. YALE: Rapid Prototyping for Complex Data

Mining Tasks. In Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and

Data Mining, Philadelphia, PA, USA, 20–23 August 2006; ACM: New York, NY, USA, 2006; pp. 935–940.

Berthold, M.; Cebron, N.; Dill, F.; Gabriel, T.; Kötter, T.; Meinl, T.; Ohl, P.; Thiel, K.; Wiswedel, B.

KNIME—The Konstanz information miner: Version 2.0 and Beyond. ACM SIGKDD Explor. Newsl. 2009, 11,

–31

MATHWORKS. Matlab; The MathWorks Inc.: Natick, MA, USA, 2004

Ihaka, R.; Gentleman, R. R: A language for data analysis and graphics. J. Comput. Graph. Stat. 1996, 5, 299–

14.

Eaton, J.W. GNU Octave Manual; Network Theory Limited: Eastbourne, UK, 2002.

Corrales, D.C.; Ledezma, A.; Corrales, J.C. A Conceptual Framework for Data Quality in Knowledge

Discovery Tasks (FDQ-KDT): A Proposal. J. Comput. 2015, 10, 396–405.

Caballero, I.; Verbo, E.; Calero, C.; Piattini, M. A Data Quality Measurement Information Model Based on

ISO/IEC 15939; ICIQ: Cambridge, MA, USA, 2007; pp. 393–408.

Ballou, D.P.; Pazer, H.L. Modeling Data and Process Quality in Multi-Input, Multi-Output Information

Systems. Manag. Sci. 1985, 31, 150–162

Berti-Équille, L. Measuring and Modelling Data Quality for Quality-Awareness in Data Mining. In Quality

Measures in Data Mining; Guillet, F.J., Hamilton, H.J., Eds.; Springer: Berlin/Heidelberg, Germany, 2007; pp.

–126.

Kerr, K.; Norris, T. The Development of a Healthcare Data Quality Framework and Strategy. In Proceedings

of the Ninth International Conference on Information Quality (ICIQ-04), Cambridge, MA, USA, 5–7 November

; pp. 218–233.

Wang, R.Y.; Strong, D.M. Beyond accuracy: What data quality means to data consumers. J. Manag. Inf. Syst.

, 12, 5–33.

R. K. Kaushik Anjali and D. Sharma, "Analyzing the Effect of Partial Shading on Performance of Grid

Connected Solar PV System", 2018 3rd International Conference and Workshops on Recent Advances and

Innovations in Engineering (ICRAIE), pp. 1-4, 2018.