Deaths from Neonatal Disorders in Nepal: An ARIMA Model Analysis and Forecast

Main Article Content

Dr.G. Mokesh Rayalu

Abstract

The burden of newborn illnesses continues to have an effect on the well-being of the people in Nepal, making neonatal death an important public health concern there. In order to predict mortality caused by newborn disorders in Nepal, this study used sophisticated time series analytic techniques, such as the ARIMA model. The research uses several diagnostic tools to guarantee the accuracy of the forecasting model, including the Augmented Dickey-Fuller (ADF) test, Autocorrelation Function (ACF), Partial Autocorrelation Function (PACF), and BoxJenkins model. This study aims to aid policymakers and healthcare providers in Nepal by shedding light on the evolution of neonatal disorders. This, in turn, will allow for the creation of more effective interventions and better public health outcomes.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Article Details

How to Cite
Rayalu, D. M. (2019). Deaths from Neonatal Disorders in Nepal: An ARIMA Model Analysis and Forecast. Turkish Journal of Computer and Mathematics Education (TURCOMAT), 10(2), 1109–1117. https://doi.org/10.61841/turcomat.v10i2.14252
Section
Research Articles

References

Siregar, F. A., Makmur, T., & Saprin, S. (2018). Forecasting dengue hemorrhagic fever cases using

ARIMA model: a case study in Asahan district. In IOP Conference Series: Materials Science and

Engineering (Vol. 300, No. 1, p. 012032). IOP Publishing.

Choudhury, Z. M., Banu, S., & Islam, A. M. (2008). Forecasting dengue incidence in Dhaka,

Bangladesh: A time series analysis.

Martinez, E. Z., Silva, E. A. S. D., & Fabbro, A. L. D. (2011). A SARIMA forecasting model to

predict the number of cases of dengue in Campinas, State of São Paulo, Brazil. Revista da

Sociedade Brasileira de Medicina Tropical, 44, 436-440.

Narayan, N. (2018). Forecast Incidence of Dengue Fever Cases in Fiji Utilizing Autoregressive

Integrated Moving Average (ARIMA) Model. International Journal of Statistics and

Applications, 8(6), 297-304.

Somboonsak, P. (2019, December). Forecasting dengue fever epidemics using ARIMA model.

In Proceedings of the 2019 2nd Artificial Intelligence and Cloud Computing Conference (pp. 144-

.

Bhatnagar, S., Lal, V., Gupta, S. D., & Gupta, O. P. (2012). Forecasting incidence of dengue in

Rajasthan, using time series analyses. Indian journal of public health, 56(4), 281-285.

Promprou, S., Jaroensutasinee, M., & Jaroensutasinee, K. (2006). Forecasting Dengue

Haemorrhagic Fever Cases in Southern Thailand using ARIMA Models.

Ahmad, W. M. A. W., Mohd Noor, N. F., Mat Yudin, Z. B., Aleng, N. A., & Halim, N. A. (2018).

TIME SERIES MODELING AND FORECASTING OF DENGUE DEATH OCCURRENCE IN

MALAYSIA USING SEASONAL ARIMA TECHNIQUES. International Journal of Public Health

& Clinical Sciences (IJPHCS), 5(1).

Cortes, F., Martelli, C. M. T., de Alencar Ximenes, R. A., Montarroyos, U. R., Junior, J. B. S., Cruz,

O. G., ... & de Souza, W. V. (2018). Time series analysis of dengue surveillance data in two

Brazilian cities. Acta tropica, 182, 190-197.

López-Montenegro, L. E., Pulecio-Montoya, A. M., & Marcillo-Hernández, G. A. (2019). Dengue

Cases in Colombia: Mathematical Forecasts for 2018–2022. MEDICC review, 21, 38-45.

Mekparyup, J., & Saithanu, K. (2015). A seasonal ARIMA model for forecasting the dengue

hemorrhagic fever patients in Rayong, Thailand. Global J Pure Appl Math, 11, 175-181.

Luz, P. M., Mendes, B. V., Codeço, C. T., Struchiner, C. J., & Galvani, A. P. (2008). Time series

analysis of dengue incidence in Rio de Janeiro, Brazil.

Mekparyup, J., & Saithanu, K. (2015). Forecasting the dengue hemorrhagic fever cases using seasonal

ARIMA model in Chonburi, Thailand. Global J Pure Appl Math, 11, 401-407.