Enhancing Cybersecurity: A Deep Learning CNN Approach to Malware Detection
Main Article Content
Abstract
Malicious software or malware continues to pose a major security concern in this digital age as computer users, corporations, and governments witness an exponential growth in malware attacks. Current malware detection solutions adopt Static and Dynamic analysis of malware signatures and behaviour patterns that are time consuming and ineffective in identifying unknown malwares. Recent malwares use polymorphic, metamorphic and other evasive techniques to change the malware behaviours quickly and to generate large number of malwares. Since new malwares are predominantly variants of existing malwares, machine learning algorithms (MLAs) are being employed recently to conduct an effective malware analysis. This requires extensive feature engineering, feature learning and feature representation. By using the advanced MLAs such as deep learning, the feature engineering phase can be completely avoided. Though some recent research studies exist in this direction, the performance of the algorithms is biased with the training data. There is a need to mitigate bias and evaluate these methods independently in order to arrive at new enhanced methods for effective zero-day malware detection. To fill the gap in literature, this work evaluates classical MLAs and deep learning architectures for malware detection, classification and categorization with both public and private datasets. The train and test splits of public and private datasets used in the experimental analysis are disjoint to each other’s and collected in different timescales. In addition, we propose a novel image processing technique with optimal parameters for deep learning convolutional neural networks (DLCNN) architectures. Overall, this work proposes an effective visual detection of malware using a scalable and hybrid deep learning framework for real-time deployments. The visualization and deep learning architectures for static, dynamic and image processing-based hybrid approach in a big data environment is a new enhanced method for effective zero-day malware detection. Finally, the simulations revealed that the proposed DLCNN resulted in superior performance as compared to existing models.
Downloads
Metrics
Article Details
You are free to:
- Share — copy and redistribute the material in any medium or format for any purpose, even commercially.
- Adapt — remix, transform, and build upon the material for any purpose, even commercially.
- The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
- Attribution — You must give appropriate credit , provide a link to the license, and indicate if changes were made . You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
Notices:
You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation .
No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material.