Unveiling The Power of Extreme Learning Machine: Combatting Spam and Identifying Fake Users on Twitter
Main Article Content
Abstract
Social networking sites engage millions of users around the world. The users' interactions with these social sites, such as Twitter and Facebook have a tremendous impact and occasionally undesirable repercussions for daily life. The prominent social networking sites have turned into a target platform for the spammers to disperse a huge amount of irrelevant and deleterious information. Twitter, for example, has become one of the most extravagantly used platforms of all times and therefore allows an unreasonable amount of spam. Fake users send undesired tweets to users to promote services or websites that not only affect legitimate users but also disrupt resource consumption. Moreover, the possibility of expanding invalid information to users through fake identities has increased that results in the unrolling of harmful content. Recently, the detection of spammers and identification of fake users on Twitter has become a common area of research in contemporary online social Networks (OSNs). This work proposes the detection of spammers and fake user identification on Twitter data using extreme learning machine (ELM) and compared the obtained results with various machine learning algorithms like random forest, naevi bayes and support vector machine. Moreover, a taxonomy of the Twitter spam detection approaches is presented that classifies the techniques based on their ability to detect: (i) fake content, (ii) spam based on URL, (iii) spam in trending topics, and (iv) fake users. The presented techniques are also compared based on various features, such as user features, content features, graph features, structure features, and time features.
Downloads
Metrics
Article Details
You are free to:
- Share — copy and redistribute the material in any medium or format for any purpose, even commercially.
- Adapt — remix, transform, and build upon the material for any purpose, even commercially.
- The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
- Attribution — You must give appropriate credit , provide a link to the license, and indicate if changes were made . You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
Notices:
You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation .
No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material.