Network Traffic Analysis for IoT Device Identification and Classification Using ML
Main Article Content
Abstract
The Internet of Things (IoT) is being hailed as the next wave revolutionizing our society, and smart homes, enterprises, and cities are increasingly being equipped with a plethora of IoT devices. Yet, operators of such smart environments may not even be fully aware of their IoT assets, let alone whether each IoT device is functioning properly safe from cyber-attacks. In this paper, we address this challenge by developing a robust framework for IoT device classification using traffic characteristics obtained at the network level. Our contributions are fourfold. First, we instrument a smart environment with 28 different IoT devices spanning cameras, lights, plugs, motion sensors, appliances, and health-monitors. We collect and synthesize traffic traces from this infrastructure for a period of 6 months, a subset of which we release as open data for the community to use. Second, we present insights into the underlying network traffic characteristics using statistical attributes such as activity cycles, port numbers, signalling patterns and cipher suites. Third, we develop a multi-stage machine learning based classification algorithm and demonstrate its ability to identify specific IoT devices with over 99% accuracy based on their network activity. Finally, we discuss the trade-offs between cost, speed, and performance involved in deploying the classification framework in real-time. Our study paves the way for operators of smart environments to monitor their IoT assets for presence, functionality, and cyber-security without requiring any specialized devices or protocols
Downloads
Metrics
Article Details
You are free to:
- Share — copy and redistribute the material in any medium or format for any purpose, even commercially.
- Adapt — remix, transform, and build upon the material for any purpose, even commercially.
- The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
- Attribution — You must give appropriate credit , provide a link to the license, and indicate if changes were made . You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
Notices:
You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation .
No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material.