Machine Learning Algorithms-based Prediction of Botnet Attack for IoT devices
Main Article Content
Abstract
There are an increasing number of Internet of Things (IoT) devices connected to the network these days, and due to the advancement in technology, the security threads and cyberattacks, such as botnets, are emerging and evolving rapidly with high-risk attacks. These attacks disrupt IoT transition by disrupting networks and services for IoT devices. Many recent studies have proposed ML and DL techniques for detecting and classifying botnet attacks in the IoT environment. This study proposes machine learning methods for classifying binary classes i.e., Benign, or TCP attack. A complete machine learning pipeline is proposed, including exploratory data analysis, which provides detailed insights into the data, followed by preprocessing. During this process, the data passes through several fundamental steps. A random forest, k-nearest neighbour, support vector machines, and a logistic regression model are proposed, trained, tested, and evaluated on the dataset. In addition to model accuracy, F1-score, recall, and precision are also considered
Downloads
Metrics
Article Details
You are free to:
- Share — copy and redistribute the material in any medium or format for any purpose, even commercially.
- Adapt — remix, transform, and build upon the material for any purpose, even commercially.
- The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
- Attribution — You must give appropriate credit , provide a link to the license, and indicate if changes were made . You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
Notices:
You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation .
No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material.