Design of Practical Parity Generator and Parity Checker Circuits In QCA
Main Article Content
Abstract
Quantum-dot Cellular Automata (QCA) has emerged as a possible alternative to CMOS in recent era of nanotechnology. Some attractive features of QCA include extremely low power consumption and dissipation, high device packing density, high speed (in order of THz). QCA based design of common digital modules have been studied extensively in recent past. Parity generator and parity checker circuits play an important role in error detection and hence act as essential components in communication circuits. However, very few efforts have been made for efficient design of QCA based parity generator and checker circuits so far. Moreover, these existing designs lack practical realizability as they compromise a lot with commonly accepted design metrics such as area, delay, complexity, and cost of fabrication. This paper presents new designs of parity generator and parity checker circuits in QCA which outperform all the existing designs in terms of the above-mentioned metrics. The proposed designs can also be easily extended to handle large number of inputs with a linear increase in area and latency.
Downloads
Metrics
Article Details
You are free to:
- Share — copy and redistribute the material in any medium or format for any purpose, even commercially.
- Adapt — remix, transform, and build upon the material for any purpose, even commercially.
- The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
- Attribution — You must give appropriate credit , provide a link to the license, and indicate if changes were made . You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
Notices:
You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation .
No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material.