Ensemble Machine Learning Model for Phishing Intrusion Detection and Classification from URLs
Main Article Content
Abstract
Phishing sounds like fishing (which means to cash fish) is a term used for an attempt to commit financial fraud on the internet. An e-mail scam is carried out on individuals or corporate organizations in an attempt to defraud them by falsely obtaining their sensitive details such as usernames, passwords, credit card information, and account numbers. For example, an email may be sent to an individual and appears with a link to click, such as “click me” showing that the recipient has won a certain amount of money, and thereafter requesting him to provide account information for verification. Unfortunately, the credentials are actually transmitted to a phisher who may exploit the person's account when the receiver sends the account details for validation. This research’s focus is to utilize different machine learning classification models to predict whether a given URL is legitimate or a phishing URL. A legitimate URL directs users to a benign authentic webpage and typically serves the user’s request. In contrast, a phishing URL directs users to a fraudulent website, usually impersonating another entity, luring visitors to believe otherwise, and eventually allowing the attacker to perform limitless post-exploitation attacks. Given the little-to-no internet safety awareness of average individuals, this paper aims to take an adaptive approach to detect phishing URLs on the client-side, which can significantly protect users from falling victims to cyber-attacks such as stealing important personal credentials. The proposed approach is to build a machine-learning powered tool that can help individuals stay safe and assist security researchers in identifying patterns and relations that correlate to these attacks, which will help maintain high-security standards for everyday internet users.
Downloads
Metrics
Article Details
You are free to:
- Share — copy and redistribute the material in any medium or format for any purpose, even commercially.
- Adapt — remix, transform, and build upon the material for any purpose, even commercially.
- The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
- Attribution — You must give appropriate credit , provide a link to the license, and indicate if changes were made . You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
Notices:
You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation .
No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material.