Automatic Generation of Segmented Labels for Road Anomaly Detection: An Application for Robotic Wheelchair
Main Article Content
Abstract
Foreground moving object segmentation is a fundamental problem in many computer vision applications. As a solution for foreground segmentation, background modelling has been intensively studied over past years and many effective algorithms have been developed. However, accurate foreground segmentation is still a difficult problem. Currently, most of the algorithms work solely within the colour space, in which the segmentation performance is prone to be degraded by a multitude of challenges, such as illumination changes, shadows, automatic camera adjustments, and colour camouflage. However, the acquisition of large-scale datasets with hand-labelled ground truth is time-consuming and labour-intensive, by using these methods often hard to implement in practice. The proposed method develops the solution of this problem for the task of drivable area and road anomaly segmentation by proposing a self-supervised learning approach. The proposed method can automatically generate segmentation labels for drivable areas and road anomalies. Then, we train RGB-D data based semantic segmentation neural networks and get predicted labels. We firstly develop a pipeline named Self-Supervised Label Generator (SSLG) to automatically label drivable areas and road anomalies. Then, we use the segmentation labels generated by the SSLG to train several RGB-D data-based semantic segmentation neural networks
Downloads
Metrics
Article Details
You are free to:
- Share — copy and redistribute the material in any medium or format for any purpose, even commercially.
- Adapt — remix, transform, and build upon the material for any purpose, even commercially.
- The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
- Attribution — You must give appropriate credit , provide a link to the license, and indicate if changes were made . You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
Notices:
You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation .
No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material.