Anomaly Detection in Network Traffic using Machine Learning and Deep Learning Techniques
Main Article Content
Abstract
Due to the rise of sophisticated cyberattacks, network security has become an increasingly important field. One of the most common threats to the security of networks is network anomalies, which can cause system malfunctions and prevent them from working properly. Detecting such anomalies is very important to ensure the continued operation of the network. Deep learning and machine learning algorithms have demonstrated their ability to detect network anomalies, but their effectiveness is still not widely known. This paper presents an evaluation of the performance of three algorithms against the KDD-NSL dataset. This study aims to provide a comprehensive analysis of the various techniques used in deep learning and machine learning to detect network anomalies. It will also help improve the security of networks. The paper presents an evaluation of the performance of three algorithms against the KDD-NSL dataset. The three algorithms are the Support Vector Machine, the Random Forest, and the Artificial Neural Network. They will be compared with their accuracy, recall, and F1-score. The study also explores the impact of the algorithm's feature selection on its performance. The findings of the investigation will be used to inform the development of new techniques that can be utilized to enhance the security of networks. The KDD NSL dataset provides an ideal opportunity to analyze the performance of various algorithms for detecting network anomalies.
Downloads
Metrics
Article Details
You are free to:
- Share — copy and redistribute the material in any medium or format for any purpose, even commercially.
- Adapt — remix, transform, and build upon the material for any purpose, even commercially.
- The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
- Attribution — You must give appropriate credit , provide a link to the license, and indicate if changes were made . You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
Notices:
You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation .
No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material.