A Machine Learning-based Approach for Network Traffic Analysis and Management
Main Article Content
Abstract
For a network to function properly and remain secure, network traffic management and analysis are essential. In this field, machine learning-based techniques have demonstrated considerable potential by offering precise and effective network traffic analysis and anomaly detection. In this research, we offer a machine learning-based methodology for network traffic monitoring and management. This method analyses network data and identifies network anomalies using a variety of machine learning methods. Using the NSL-KDD dataset and other machine learning methods, such as decision trees, SVM, neural networks, and random forests, we assess the effectiveness of our strategy. The outcomes of our tests show how successful our suggested strategy is, with high accuracy rates and low false positive rates. In numerous network management and security applications, our suggested approach beats cutting-edge machine learning-based algorithms for network traffic analysis and management. The suggested strategy offers a positive perspective for improving network administration and security through machine learning.
Downloads
Metrics
Article Details
You are free to:
- Share — copy and redistribute the material in any medium or format for any purpose, even commercially.
- Adapt — remix, transform, and build upon the material for any purpose, even commercially.
- The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
- Attribution — You must give appropriate credit , provide a link to the license, and indicate if changes were made . You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
Notices:
You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation .
No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material.