A Transfer Learning-based Approach for Multimodal Emotion Recognition
Main Article Content
Abstract
The topic of multimodal emotion recognition is one that is expanding at a rapid rate. The goal of this field is to identify and comprehend human emotions through the use of many modalities, such as speech, facial expressions, and physiological data. Transfer learning strategies have been found to be successful in overcoming the issues of processing and integrating material from a variety of modalities, as demonstrated by the findings of a number of studies. For testing multimodal emotion detection models, it is helpful to make use of publicly accessible datasets like IEMOCAP, EmoReact, and AffectNet. They provide useful resources. Data variability, data quality, modality integration, limited labelled data, privacy and ethical issues, and interpretability are only few of the hurdles that must be overcome in order to construct accurate and effective models. In order to address these challenges, a multidisciplinary approach must be taken, and research must continue to be conducted in this area. The goal of this research is to develop more robust and accurate models for multimodal emotion recognition that can be applied across a variety of contexts and populations.
Downloads
Metrics
Article Details
You are free to:
- Share — copy and redistribute the material in any medium or format for any purpose, even commercially.
- Adapt — remix, transform, and build upon the material for any purpose, even commercially.
- The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
- Attribution — You must give appropriate credit , provide a link to the license, and indicate if changes were made . You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
Notices:
You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation .
No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material.