Webpage Recommendation System Based on the Social Media Semantic Details of the Website
Main Article Content
Abstract
The web page recommendation is generated by using the navigational history from web server log files. Semantic Variable Length Markov Chain Model (SVLMC) is a web page recommendation system used to generate recommendation by combining a higher order Markov model with rich semantic data. The problem of state space complexity and time complexity in SVLMC was resolved by Semantic Variable Length confidence pruned Markov Chain Model (SVLCPMC) and Support vector machine based SVLCPMC (SSVLCPMC) meth-ods respectively. The recommendation accuracy was further improved by quickest change detection using Kullback-Leibler Divergence method. In this paper, socio semantic information is included with the similarity score which improves the recommendation accuracy. The social information from the social websites such as twitter is considered for web page recommendation. Initially number of web pages is collected and the similari-ty between web pages is computed by comparing their semantic information. The term frequency and inverse document frequency (tf-idf) is used to produce a composite weight, the most important terms in the web pages are extracted. Then the Pointwise Mutual Information (PMI) between the most important terms and the terms in the twitter dataset are calculated. The PMI metric measures the closeness between the twitter terms and the most important terms in the web pages. Then this measure is added with the similarity score matrix to provide the socio semantic search information for recommendation generation. The experimental results show that the pro-posed method has better performance in terms of prediction accuracy, precision, F1 measure, R measure and coverage.
Downloads
Metrics
Article Details
You are free to:
- Share — copy and redistribute the material in any medium or format for any purpose, even commercially.
- Adapt — remix, transform, and build upon the material for any purpose, even commercially.
- The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
- Attribution — You must give appropriate credit , provide a link to the license, and indicate if changes were made . You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
Notices:
You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation .
No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material.