An Experimental Study for Software Quality Prediction with Machine Learning Methods
Main Article Content
Abstract
Software quality estimation is an activity needed at various stages of software development. It may be used for planning the project's quality assurance practices and for benchmarking. In earlier previous studies, two methods (Multiple Criteria Linear Programming and Multiple Criteria Quadratic Programming) for estimating the quality of software had been used Also, C5.0, SVM and Neutral network were experimented with for quality estimation. These studies have relatively low accuracies. In this study, we aimed to improve estimation accuracy by using relevant features of a large dataset. We used a feature selection method and correlation matrix for reaching higher accuracies. In addition, we have experimented with recent methods shown to be successful for other prediction tasks. Machine learning algorithms such as Xgboost, Random Forest and Decision Tree are applied to the data to predict the software quality and reveal the relation between the quality and development attributes. The experimental results show that the quality level of software can be well estimated by machine learning algorithms.
Downloads
Metrics
Article Details
You are free to:
- Share — copy and redistribute the material in any medium or format for any purpose, even commercially.
- Adapt — remix, transform, and build upon the material for any purpose, even commercially.
- The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
- Attribution — You must give appropriate credit , provide a link to the license, and indicate if changes were made . You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
Notices:
You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation .
No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material.