MSMOTE: Improving Classification Performance when Training Data is imbalanced
Main Article Content
Abstract
Learning from data sets that contain very few instances of the minority class usually produces biased classifiers that have a higher predictive accuracy over the majority class, but poorer predictive accuracy over the minority class. SMOTE (Synthetic Minority Over-sampling Technique) is specifically designed for learning from imbalanced data sets. This paper presents a modified approach (MSMOTE) for learning from imbalanced data sets, based on the SMOTE algorithm. MSMOTE not only considers the distribution of minority class samples, but also eliminates noise samples by adaptive mediation. The combination of MSMOTE and AdaBoost are applied to several highly and moderately imbalanced data sets. The experimental results show that the prediction performance of MSMOTE is better than SMOTEBoost in the minority class and F-values are also improved.
Downloads
Metrics
Article Details
You are free to:
- Share — copy and redistribute the material in any medium or format for any purpose, even commercially.
- Adapt — remix, transform, and build upon the material for any purpose, even commercially.
- The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
- Attribution — You must give appropriate credit , provide a link to the license, and indicate if changes were made . You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
Notices:
You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation .
No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material.