Improved Demntia Images Detection And Classification Using Transfer Learning Base Convulation Mapping With Attention Layer And XGBOOST Classifier
Main Article Content
Abstract
A classification scheme for the etiology of brain disease based on magnetic resonance imaging is proposed in this paper. Then, attention-based, transfer learning (Extracting variable characteristics of patterns from MRI scans) was used to generate more accurate predictive patterns, and finally, features were trained and used to classify fMRI data to Boost derived hyper-parameters were obtained and evaluated to identify different patterns of dementia risk. Typically-to-to-independent variable extractions are performed by using gradient boosting and then produces derived variables. The MRI in the system is pulled from the ADNI database. When using Feature extractor's technique, we find that most features are extracted at an acceptable speeds. The experimental results proved that the proposed approach can be applied to the task of classifying output in the proper manner. The method would help to increase precision and accuracy by (almost) 4.2 percent, while keeping recall at (virtually) 94.6%
Downloads
Metrics
Article Details
You are free to:
- Share — copy and redistribute the material in any medium or format for any purpose, even commercially.
- Adapt — remix, transform, and build upon the material for any purpose, even commercially.
- The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
- Attribution — You must give appropriate credit , provide a link to the license, and indicate if changes were made . You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
Notices:
You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation .
No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material.