Speech to text Conversion using Deep Learning Neural Net Methods
Main Article Content
Abstract
Internet has grown in the past and has transformed several fields and changed numerous
lives. Internet can be a blessing for humanity. The primary field that has been transformed by
internet technology is communication. Internet has allowed speedier and simpler
communication. In this paper, we intend to explore the various methods for conversion of
speech-to-text that can be utilized in an email system that is based on voice. This method is
built on the interactive voice response. The goal is to research and evaluate the different
methods that are used in STT conversions, and find the most efficient method that is able to
be adapted to both conversion processes. In the end, based on a review study, it has been
discovered that HMM using deep neural networks is the most effective statistical model , and
therefore the best for STT. In the end, a model that uses HMM and ANN techniques to
convert STT conversion is suggested.
Downloads
Metrics
Article Details
You are free to:
- Share — copy and redistribute the material in any medium or format for any purpose, even commercially.
- Adapt — remix, transform, and build upon the material for any purpose, even commercially.
- The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
- Attribution — You must give appropriate credit , provide a link to the license, and indicate if changes were made . You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
Notices:
You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation .
No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material.