Review on Machine Learning Techniques to predict Bipolar Disorder
Main Article Content
Abstract
Bipolar disorder, a complex disorder in brain has affected many millions of people around the world. This brain disorder is identified by the occurrence of the oscillations of the patient’s changing mood. The mood swing between two states i.e. depression and mania. This is a result of different psychological and physical features. A set of psycholinguistic features like behavioral changes, mood swings and mental illness are observed to provide feedback on health and wellness. The study is an objective measure of identifying the stress level of human brain that could improve the harmful effects associated with it considerably. In the paper, we present the study prediction of symptoms and behavior of a commonly known mental health illness, bipolar disorder using Machine Learning Techniques. Therefore, we extracted data from articles and research papers were studied and analyzed by using statistical analysis tools and machine learning (ML) techniques. Data is visualized to extract and communicate meaningful information from complex datasets on predicting and optimizing various day to day analyses. The study also includes the various research papers having machine Learning algorithms and different classifiers like Decision Trees, Random Forest, Support Vector Machine, Naïve Bayes, Logistic Regression and K- Nearest Neighbor are studied and analyzed for identifying the mental state in a target group. The purpose of the paper is mainly to explore the challenges, adequacy and limitations in detecting the mental health condition using Machine Learning Techniques
Downloads
Metrics
Article Details
You are free to:
- Share — copy and redistribute the material in any medium or format for any purpose, even commercially.
- Adapt — remix, transform, and build upon the material for any purpose, even commercially.
- The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
- Attribution — You must give appropriate credit , provide a link to the license, and indicate if changes were made . You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
Notices:
You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation .
No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material.